
-R 16SI CONCURRENT QUEUES: PRACTICAL FETCH- WN-PHI ALGORITHMS iVi
(U) ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCEp J M NELLOR-CRUMNEY NOV 87 TR-229 DACR76-85-C-USSI

UNaRSSIF lED F/G 12/4 N

,Emmons hhhh

1.0 L1.

IE~

t 1 =
1.25 11. 4 1j.,
WilI I1

S

Concurrent Queues:
Practical Fetch-and-4 Algorithms

John M. Mellor-Crummey

The University of Rochester
Computer Science Department
Roclfester, New York 14627

Technical Report 229 D"
November 1987.& cr W

. ,[

Concurrent Queues:

Practical Fetch-and4"Algorithms

John M. Mellor-Crummey

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report 229 DTIC
November 1987 % E0TED

Abstract

With the growing use of multiprocessors, data structures that support concurrent
operations have become increasingly important. In particular, algorithms and data
structures for efficient implementation of concurrent queues have generated inter-
est since operating systems heavily use queueing structures. Existing algorithms for
managing concurrent queues all have drawbacks for practical implementation and
use. This paper presents two practical implementations of a concurrent queue of
unbounded length using fetch-and-4 primitives (a class of atomic read-modify-write
operations) and argues their correctness. The first implementation provides wait-
free enqueues with unbounded concurrency, although dequeues possess an inherently
sequential component. The second implementation provides parallelism among a
bounded number of enqueue and dequeue operations. This implementation provides
greater parallelism than existing algorithms and allows the user to trade space for
potential parallelism. Both implementations satisfy the strong correctness criterion
of linearizability whereas existing algorithms with similar properties do not.

This research was supported by U.S. Army Engineering Topographic Laboratories
research contract no. DACA76-85-C-000I and NSF research grant no. CCR-8704492.

DISTRIBUTION ArA1 A
Approved for public releM.;

Dftrzbutlon. T7nlimt~t -,

WbNNt&

SECURITY CLASSIFICATION OF THIS PAGE (Whein Data Entered) 4 / / 5 / .
DOCUMENTATION PAGE READ INSTRUCTIONS

REPORT BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBERTR 229 1

4. TITLE (and Subtl5) S. TYPE OF REPORT 6 PERIOD COVERED

Concurrent Queues: Practical Fetch-and-1 technical report
Al gori thms 8. PERFORMING ORG. REPORT NUMBER

7. AUTHORe) U. CONTRACT OR GRANT NUMBER(&)

John M. Mellor-Crummey DACA76-85-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Dept. of Computer Science
734 Computer Studies Bldg.
University of Rochester, Rochester, NY 14627

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/ 1400 Wilson Blvd. November 1987
Arlington, VA 22209 13. NUMBER OF PAGES

27
14. MONITORING AGENCY NAME 4 AODRESS(If dilf erent from Controlling Office) IS. SECURITY CLASS. (of this report)

U.S. Army Engineering Topographic Laboratories unclassified
Ie. ECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If dliferent from Report)

I8. SUPPLEMENTARY NOTES

13. KEY WORDS (Continua on reveree side if necesary and Identily by block number)

concurrent data structures linearizability
unbounded queues shared-memory multiprocessors
atomicity
correctness

20. ABSTRACT (Continue on reverse side Of necessary ind Identtfy by block number)

With the growing use of multiprocessors, data structures that support con-
current operations have become increasingly important. In particular,
algorithms and data structures for efficient implementation of concurrent
queues have generated interest since operating systems heavilv use queueing
structures. Existing algorithms for managing concurrent queues all have draw-
backs for practical implementation and use. This paper presents two practical
implementations of a concurrent queue of unbounded length using fetch-and-1

DDFORM
DDJAN 7 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (hen Date Entered)

20. ABSTRACT (Continued)

primitives (a class of atomic read-modify-write operations) and argues their
correctness. The first implementation provides wait-free enqueues with un-
bounded concurrency, although dequeues possess an inherently sequential
component. The second implementation provides parallelism among a bounded
number of enqueue and dequeue operations. This implementation provides greater
parallelism than existing algorithms and allows the user to trade space for
potential parallelism. Both implementations satisfy the strong correctness
criterion of linearizability whereas existing algorithms with similar properties
do not.

- r ' si[

1 Introduction

With the growing use of multiprocessors, data structures that permit concurrent operations
have become increasingly important. In particular, algorithms and data structures for effi-
cient implementation of concurrent queues have generated interest since operating systems
heavily use queuing structures.

An important correctness criterion for an implementation of a concurrent data structure
is that of linearizability [Herlihy and Wing 1987]. The real-time relationships among a set of
operations on a concurrent data structure (hereafter referred to as an operation history for
the data structure) define a partial order. For each pair (z,y) of non-overlapping operations
in the set where z precedes y in the execution, the partial order includes a constraint
that orders z before y; concurrent operations have no ordering constraints between them.
Operations on a concurrent data structure are said to be linearizable iff the partial order
of operations in any possible operation history for the data structure can be extended to a
total order that corresponds to a legal sequential history for that data structure. In other
words, a linearizable operation history has the same effect on the data structure as some

sequence of non-overlapping operations. Satisfying the linearizability criterion insures that
introducing concurrency in an implementation of operations on a data structure does not
alter its semantics.

Constructing an implementation of a concurrent queue that permits only linearizable
operation histories is difficult. Without direct hardware support, enqueue and dequeue
operations on the queue are not atomic; rather, they are implemented as a sequence of
primitive atomic operations supported by an underlying machine. Operations on the queue
must coordinate using the primitives of the underlying machine to insure that all operation
histories for the data structure are linearizable.

Fetch-and-t primitives, proposed by Gottlieb and Kruskal [Gottlieb and Kruskal 1981],
are a class of atomic read-modify-write operations that have gained acceptance as an expres-
sive set of primitives for coordinating parallel computation. t denotes a binary associative
atomic operation that is applied to the value of a location, and possibly a set of additional
values, given as arguments to the fetch-and-$ operation. Examples of fetch-and-t primi-
tives include fetch-and-add and fetch-and-store. This class also includes operations such as

atomic-write and atomic-read which are degenerate cases of fetch-and-store. Several archi-
tectures [BBN 1985), [Edler et al. 1985a] provide fetch-and-t primitives for coordination of

parallel processes.

There are several existing algorithms for managing concurrent queues, but each has
drawbacks for efficient, practical implementation and use.

Lamport [Lamport 1983] presents an example of a simple concurrent queue of bounded n For
length that permits only a single enqueue and dequeue to be simultaneously active at any
time; however, the implementation permits full concurrency between those two operations. I

Dimitrovsky [Dimitrovsky 1986] presents an implementation of a concurrent queue us- ..d [
ing fetch-and-6 primitives that collects enqueues and dequeues into separate phases. All Icn-

operations within a phase execute concurrently. The primary limitation is that the queue
may hold only a bounded number of elements. This implementation limits the number of
concurrent operations on the queue to the size of the queue. A1on/

toblnilbitr Codes
1 /Avail and/or

.J. iSpecia.l

Herlihy and Wing [Herlihy and Wing 1987] present a design for a concurrent queue
using fetch-and-add, atomic-write, and fetch-and-store primitives. Their implementation
provides wait-free [Herlihy 1987] enqueues.1 A dequeue, however, may take arbitrarily long:
it continues scanning the queue until it finds an item. The main drawback to their solution is
that it requires a dedicated buffer of unbounded length to store the queue. Also, augmenting
the semantics of their dequeue operation to recognize when it has been invoked on an empty
queue calls for non-trivial changes to their algorithm.

Practical implementations of queues of unbounded length use some form of a linked-list
data structure. Rudolph [Rudolph 1982] presents a design for an unbounded concurrent
queue using fetch-and-f primitives which represents a single queue as an array of linked
lists. Fetch-and-add operations on indices direct enqueue and dequeue operations to the
next appropriate list. Each list is protected by a critical section which forces operations
on that list to be sequential. The maximum concurrency in this design is bounded by the
number of lists. Rudolph's implementation fails to satisfy the linearizability correctness
criterion as it admits operation histories that are non-linearizable and therefore by our
standard, are not correct. Appendix B addresses this point in greater depth.

This paper presents practical algorithms using fetch-and-4 primitives to implement en-
queue and dequeue operations for an unbounded concurrent queue and argues that they
satisfy the linearizability correctness criterion providing first-in-first-out (FIFO) semantics.
A limitation of the algorithms presented in this paper is that they do not tolerate failure
of any operation. Section 2 presents algorithms for concurrent enqueue and dequeue opera-
tions for a simple linked-list queue. These algorithms provide wait-free enqueue operations
with potential for unbounded concurrency, but dequeues have an inherently sequential com-
ponent. Section 3 extends these algorithms to manipulate a queue implemented as an array
of linked lists. This solution balances potential parallelism between enqueue and dequeue
operations better than the first solution. The maximum number of concurrent operations
in this design is twice the number of linked-lists that form the queue. The number of lists
can be fixed at arbitrarily high level trading space for potential parallelism. Section 4 offers
some insight into designing algorithms that provide only linearizable operation histories on
a concurrent data structure and some implications the algorithms in this paper have for the
design of multiprocessors.

2 A Simple Concurrent Queue

This section presents enqueue and dequeue algorithms for a simple linked-list implemen-
tation of an unbounded FIFO queue and argues their correctness. These algorithms rely
on several built-in atomic primitives: atomic-read, atomic-write, fetch-and-store, fetch-and-
add, and compare-and-swap (the semantics of these operations are given in appendix A).
Each of the assumed primitives belongs to the class of fetch-and-f primitives described by
Gottlieb and Kruskal [Gottlieb and Kruskal 1981], [Edler et al. 1985b].

'An operation is said to be wait-free if it takes only a finite number of instructions to complete, regardless
of the execution speeds of other processes.

2

A linked-list queue implementation permits a potentially unbounded number of ele-
ments to simultaneously reside in the queue.2 However, linked structures suffer from the
disadvantage that removing an element requires indirection through a pointer followed by a
write to that pointer; this process is inherently sequential. Thus, there must be a sequential

component in a dequeue operation on a linked queue.

In our implementation, the queue data structure is represented by two pointers: L.head,
a pointer to the first element in the list, and L.tail, a pointer to the last element in the list.
The list is initialized by calling initList, which sets L.head and L.tail to nil.

type
element - record

-- pointer to the next element on the list
next: pointer to element;
... ; -- the user defined portion of the element structure

end;

-- data structure for a FIFO list
list = record

-- pointers to the head and tail elements in the list, respectively
head, tail: pointer to element;

end;

-- initialize the list data structure
procedure initList(var L: list);
begin

L.head :- nil; L.tail :- nil;

end;

-- enqueue an element on a FIFO list
procedure enqueue(var L: list; var e: element);
var last: pointer to element;
begin

e.next - nil; -- new element will be last on list
-- replace the tail of the list with e, returning the previous tail
last := fetch-and-store(L.taile);
if last a nil then -- list was previously empty: update the head pointer

atomic-write(L.head,e);
else

atomic-write (last-. next, e); -- link e behind last
end;

end;

2Actually, a bound is present in this implementation as well, but it is effectively the cardinality of the set
of possible addresses that a pointer may assume. In a practical sense, this is the maximum realizable queue
size.

3

The enqueue operation takes two arguments: L, a reference to a list, and e, a reference
to an element. To enqueue e on L, the enqueue routine sets e's next field to nil, preparing
e to become the tail of the list. The fetch-and-store on L.tail returns the previous value
of L.tail (the current last element on the list) and replaces it with a pointer to e. This
operation establishes e as the tail of the list and provides a pointer to last, the previous tail
of the list. If last is nil, then the queue was previously empty. In this case, the enqueue
operation updates L.head to point to e, the first (and only) element in the queue. Otherwise,
if last is non-nil, the enqueue completes by linking e after last.3

A dequeue of an element from a list occurs in two stages. The first stage removes an
element from the head of the list. The second stage handles the special case in which the
element removed was the only element in a singleton list.

-- dequeue an element from a FIFO list, return nil if list is empty
procedure dequeue(var L: list): pointer to element;
var firstEl, secondEl: pointer to element;
begin

loop -- until an element is found or the list is empty
-- get the element at the head and lock the head with nil
firstEl :- fetch-and-store(L.head,nil);
if not (firstEl a nil) then exit; -- got an element
elsif atomic-read(L.tail) = nil then

return nil; -- the list is empty
end;
-- a concurrent operation has made the list state inconsistent, try again

end;
-- get a pointer to the next element in the list
secondEl := atomic-read(firstEl.next);

if secondEl = nil then
-- firstEl was the only element in the list, need to update L.tail
if compare-and-swap(L.tail,firstEl,nil) a FALSE then

-- firstEl is no longer at the tail: a concurrent enqueue is detected
-- loop until the concurrent enqueue completes
repeat until not (firstEl'.next = nil);
atomic-write (L. head, firstEl' .next); --update head pointer

end;

else
atomic-write(L.head,secondEl); -- establish secondEl as the head of the list

end;
return firstEl; -- return the element dequeued

end;

3 By using the address of the list data structure L as the value nil and requiring that head be at the
same offset in L as next is in an element, the body of the enqueue operation simplifies to: e. next : nil;
atomic-write(fetch-and-store(L. tail,e) -. nexte).

4

The initial loop in dequeue terminates either by successfully removing an element from
the head of the list, or by returning nil if the list is empty. To provide linearizability for
the queue, a dequeue must never return nil when invoked on a queue that is non-empty
for the duration of the dequeue operation. For now, assume the queue invariant that L.tail
is non-nil if the queue is non-empty.

While L.tail is non-nil (and thus, the queue is non-empty), a dequeue polls L.head
with a fetch-and-store until an element is found. This use of fetch-and-store prevents two
dequeue operations from seeing the same element at the head of the queue. Upon exit from
the loop, firstEl points to the first element in the list, and L.head is nil. The successor of
firstEl in the list is assigned to secondEl.

After removing firstEl from the front of the list, it is necessary to test if firstEl was
the only element on the list. If secondEl is not nil, then its value is copied into L.head
establishing firstEls successor as the head of the list and the dequeue is complete. Other-
wise, if secondEl is nil, the tail pointer may need to be updated. In this case, firstEl was
the only element on the list at the time secondEl was assigned the value of firstEls next
pointer. This may no longer be true as a concurrent enqueue operation may have linked a
new element at the end of the list. The protocol that follows prevents a concurrent enqueue
from linking a new element behind firstEl unobserved by the dequeue. A compare-and-swap
with L.tail is performed, replacing its value with nil if it still points to firstEl. If this
compare-and-swap succeeds, then no concurrent enqueue operation has a pointer to firstEl,
the list has been marked empty, and the dequeue can safely complete. 4 Otherwise, failure
of the compare-and-swap indicates the presence of a concurrent enqueue operation that may
still have a pointer to firstEl. In this case, the dequeue busy-waits until the enqueue has
updated the next field of firstEl. When the update is complete, the dequeue copies the val,te
of firstErs next pointer into L.head, establishing the new element as the first in the queue,
and returns successfully.

In the description of the dequeue operation, we assumed above that the queue possesses
the following property: L.tail is nil iff the queue is empty. This property is shown to be
invariant by examining the cases in which L.tail is written.

1. L.tail and L.head are initialized to nil by initList. The list is initially empty and the
property holds.

2. As its first operation on the queue data structure, each enqueue updates L.tail by
replacing its value with a non-nil value using a fetch-and-store. Thus, the property
is preserved by enqueue operations.

3. A dequeue operation may set L.tail to nil iff the element dequeued was the final
one in the queue and no enqueue operations have begun insertion (by executing a
fetch-and-store on L.tail) since firstEl was entered into the queue. Thus, a dequeue
will not set L.tail to nil unless the queue is really empty maintaining the property.

4Since enqueues access the tail pointer only through jetch-and-store, if the value of firstEl is still in L.tail.
then no enqueue has executed a fetch-and-store after the one that enqueued firstEl. Thus, firstEl is the last
element on the list and L.tail is correctly set to nil by the compare.and-swap.

5

Since the property initially holds and none of the updates to L. tail cause it to be violated,
we may conclude that the property is invariant for the queue. A consequence of this invariant
is that L.tail = nil implies L.head = nil since L.tail = L.head = nil when the queue is
empty.

2.1 Restrictions

Elements are passed by reference as arguments to the enqueue routine. If an element already
linked in a queue is passed by as an argument to the enqueue routine, the queue structure
can be disrupted since the element's next pointer will be overwitten. This may cause a set
of elements to dissappear from the queue. Therefore, an element that is already linked in
the queue may not be provided as an argument to the enqueue routine. Furthermore, the
element provided to the enqueue routine must be non-nil. Code that prevents misuse of the
element argument can be added easily to the enqueue routine; however, it was neglected
here to simplify the presentation.

2.2 Properties

Tlo complete the description of the enqueue and dequeue routines presented above, we
present arguments to show that they correctly implement a linearizable FIFO queue. First,
we show sequential correctness. Specifically:

" An enqueue correctly adds an element at the rear of the queue.

" A dequeue correctly removes an element from the front of the queue.

Next, we argue interference freedom for the queue operations. Specifically:

* Concurrent enqueues do not interfere with one another.

* Concurrent dequeues do not interfere with one another.

* Concurrent enqueues and dequeues do not interfere with one another.

We conclude by showing that operation histories on the queue are linearizable by demon-
strating a mapping that transforms an operation history into a linear order, and showing
that this order corresponds to a legal sequential history for a queue that maintains the
FIFO property.

Sequential Correctness

* An enqueue correctly adds an element at the rear of the queue.

The next field of a new element e is set to nil, preparing e to be the tail of the list. A
fetch-and-store on L.tail returns last, the element formerly at the tail of the list, and
establishes e as the new tail of the list. If last is nil, then the list is empty and e is
established at the head of the list; otherwise, e is linked behind last.

6

A dequeue correctly removes an element from the front of the queue.

If the queue is empty (L.tail = L.head = nil) then firstEl gets nil from L.head
(leaving L.head unchanged) and the dequeue returns nil.

For a non-empty queue (neither L.tail nor L.head is nil), firstEl ge's a pointer to the
first element in the list from L.head and secondEl gets a pointer to firstEl's successor.
If secondEl is nil, then L.tail is set to nil if it still points to firstEl (in the absence of
a concurrent enqueue, this always succeeds); L.head is already nil from the fetch-and-
store that returned firstEl; and the dequeue returns firstEl leaving the queue empty.
Otherwise, if secondEl is non-nil its value is written into L.head to re-establish L.head
as a pointer to the head of the list.

Interference Freedom

Consider each enqueue or dequeue operation active during the closed temporal interval
defined by execution of its first and last atomic operations on the shared list structure. For
example, an enqueue is active during the interval beginning with its fetch-and-store and
ending with its atomic-write. We refer to two queue operations as concurrent if their active
intervals overlap.

Above we showed that enqueues and dequeues perform properly if executed in mutual
exclusion. Here, we show that enqueues and dequeues perform correctly even in the presence
of concurrent operations. Specifically, we show that concurrent operations do not interfere
with one another. To understand the arguments for interference freedom presented below,
it is important to keep in mind that concurrent operations cannot directly affect the state
of each other's local variables; they can only indirectly affect one another by modifying the
shared list structure.

I Concurrent enqueues do not interfere with one another.

Using a fetch-and-store on L.tail insures that each enqueue never issues a dead write to
L.tail.s Since the fetch-and-store atomically reads and overwrites the value of L.tJ:;l,
it insures that each value of L.tail is seen by at most one enqueue; thus, concurrent

enqueues each obtain a different pointer from L.tail. Since each enqueue gets a differ-
ent pointer from L.tail, no two concurrent enqueues write to the same location with
their atomic-write statement. Therefore, since the atomic operations by concurrent
enqueues on the shared list structure do not interfere, concurrent enqueues do not
interfere with one another.

* Concurrent dequeues do not interfere with one another.

A dequeue D claims an element at the head of the queue by atomically obtaining its
pointer from L.head and overwriting L.head with nil so no other dequeue sees the
same element. If firstEl, the value from L.head, and L.tail are nil, then the list is
empty and the dequeue returns nil leaving the list unchanged. If firstEl is non-nil,
then the dequeue exits its loop statement and continues.

5 A dead write to a variable is one that is followed by another write to that variable without an intervening
read.

7

' .

From the invariant shown earlier, L.head - nil implies L. tail - nil. When D obtains a
non-nil value from L.head with a fetch-and-store setting L.head to nil, L.tail remains
non-nil. No enqueues update L.head while L.tail is non-nil and no dequeues other
than D can affect the state of the shared list until L.head becomes non-nil. D does
not set L.tail to nil or L.head to a non-nil value until its final operation on the shared
list structure; therefore, the rest of D's operations execute without interference from
other dequeues.

Concurrent enqueues and dequeues do not interfere with one another.

A dequeue can change the value of L.head with a fetch-and-store only if L.head is non-
nil. An enqueue can only update L.head if it obtains a nil from L.tail. As shown
earlier, L.tail = nil only if L.head = nil; therefore, updates to L.head by enqueues
and fetch-and-stores to L.head by dequeues do not interfere. A dequeue only issues an
atomic-write to L.head when another element is in the list (i.e., the list is non-empty
and L.tail 0 nil); therefore, atomic-writes tc L.head by dequeues do not interfere
with updates to L.head by enqueues either.

Concurrent dequeues do not interfere with enqueues by overwriting values of L.toil.
Dequeues update L.tail using compare-and-swap. A dequeue overwrites a value of
L.tail using compare-and-swap only if its value matches the pointer obtained from
L.head. An element is visible from the head of the queue only after its enqueue is
complete. Therefore, a dequeue will not write nil over an element pointer in L.tail
until the enqueue of the element is complete.

When an enqueue is linking an element at the end of the queue, a concurrent dequeue
will not cause the result of the enqueue to be lost. If the element being removed by a

dequeue is not the only element in the list, then the dequeue does not interact with an
enqueue. If the dequeue is removing the last element in a list, we must consider the
interaction between the dequeue and an enqueue updating the element's next field.
Since a dequeue atomically reads the next field of the element being dequeued and the
update of the element's next field by an enqueue is also atomic, the enqueue updates
the field either before or after the read. If the update occurs before the read, the
enqueue is complete and the successor element is correctly in place. Otherwise, the
dequeue sees a nil in the next field and executes a compare-and-swap on L.tail to
finish unlinking its element. With a concurrent enqueue is in progress, the compare-
and-swap fails signalling the enqueue's presence and the dequeue waits for the enqueue
to finish linking the new element behind the singleton. The dequeue then copies a
pointer to the new element into L.head, correctly installing it at the head of the list.

Linearizability

To demonstrate linearizability, we present a mapping that transforms an operation history
for the concurrent queue into a linear order that is consistent with the real-time ordering
of the operations and argue that this operation ordering provides FIFO semantics for the
queue.

8I

S$
" v,, y ,

" Map each enqueue to the completion of its fetch-and-store operation on L. tail. If two
simultaneous enqueues map to the same point as a result of true concurrency available
with a combining network (Kruskal et al. 19861 (a switching network that combines

operations directed at the same memory location), the mapping can be perturbed
slightly to serialize the mapping of the operations in a manner consistent with the
apparent serialization provided by the combining network.

" Map each dequeue returning a non-nil value to the completion of its last fetch-
and-store on L.head and each dequeue returning nil to its last atomic-read of L.tail.

Successful dequeues each map to a unique point since only one of a set of simultaneous
fetch-and-store operations receives a non-nil value. Unsuccessful dequeues that map
to the same point due to combination of simultaneous atomic-reads of L.tail can be
serialized in an arbitrary order. A successful dequeue and an unsuccessful dequeue

never map to the same point because an unsuccessful dequeue requires L.tail = nil,
but a successful dequeue only occurs when the queue is non-empty and L.tail $ nil.

To resolve a conflict when an enqueue and a dequeue are simultaneous, perturb the
mapping as follows:

" If the dequeue is unsuccessful, map it before the enqueue. This insures that the queue
is empty for the dequeue.

" If the dequeue is successful, map it after the enqueue. Perturbing the mapping in this

manner will not violate the FIFO property as the presence of additional elements in
the queue will not alter the result of a dequeue.

Mapping enqueues to their fetch-and-stores insures that they map in the order that
they actually link the elements into the queue. Mapping successful dequeues to their last
fetch-and-store on L.head serializes the dequeues in the order they remove elements from
the queue. Clearly, a dequeue cannot obtain a pointer to an element using a fetch-and-store
on L.head until after that element has been enqueued - enqueueing an element is the only
way to (eventually) have a pointer to it appear in L.head.

An unsuccessful dequeue may occur only when L.tail is nil; therefore, L.head must also
be nil (from the invariant shown earlier) and the queue indeed empty. This policy prevents
a dequeue from missing an element enqueued by a concurrent enqueue.

Using these mappings for operations, any operation history permitted by the implemen-
tation can be turned into a linear ordering. Since each queue operation maps to a statement
inside its active interval, the mapping satisfies the partial order induced by the real-time
relationships of the intervals. Furthermore, the above arguments show that the mapping is
consistent with a legal sequential history for the queue. Therefore all operation histories of
the concurrent queue presented in this section satisfy the inearizability criterion.

2.3 Discussion

The important feature of the above algorithms for enqueueing and dequeueing items from

a linked list is the lack of a critical section in the enqueue routine. This enables unbounded

9

* U '..v ,.i.~.~-r~ *

concurrency among enqueue operations. The only limit on the potential parallelism among
enqueues is the number of processors available, provided that the underlying hardware com-
bines simultaneous fetch-and-store operations on L.tail using a combining network. Also,
by substantially decoupling the enqueue and dequeue operations, a dequeue need only be
aware of concurrent enqueues if it is removing the only element in a singleton queue. The
algorithms designed by Rudolph for manipulating FIFO linked lists (as part of a larger
queue data structure) use a critical section in both the enqueue and dequeue routines
[Rudolph 1982, p. 76]. This approach is inherently sequential, permitting only a single
operation on each list at a time.

In the absence of a combining network, it is unclear that the implementation of an un-
bounded queue described herein is less efficient than Rudolph's implementation of a bounded
queue [Rudolph 1982, p.73]. In Rudolph's implementation, enqueues and dequeues update
mutually shared counters with fetch-and-adds to maintain upper and lower bounds on the
number of elements in the queue. Without a combining network, updates to these shared
variables are sequential and limit the parallelism achievable. In the approach presented
here, enqueue and dequeue operations are decoupled - enqueues operate on the tail pointer
and dequeues operate on the head pointer - except in the boundary cases arising with sin-
gleton and empty queues. If the head and tail pointers are located in different memory
banks, the operations can occur in parallel with no interaction. On the other hand, the
short critical section in the dequeue algorithm could prove the limiting factor on the queue
throughput. Empirical studies are necessary to reliably determine which implementation
provides greater throughput.

Additionally, consider the performance of the algorithms presented here against the
classic approach that uses a critical section guarded by a test-and-set to protect the integrity
of a queue. In the presence of contention, our algorithms would certainly outperform any
test-and-set style solution since we decouple enqueues and dequeues, whereas the classic
critical section solution couples enqueu's and dequeues. In the absence of contention, the
algorithms presented here would again outperform a solution using test-and-set because
they are so simple. Just executing a test-and-set on a lock and a remote write to clear the
lock when finished with the critical section uses as many remote operations as the entire
enqueue routine presented here; operating on the queue in the critical section requires
additional operations. This observation also applies to the dequeue operation.

3 Balancing Parallelism Among Enqueues And Dequeues

Although the algorithms presented in section 2 are simple and efficient, the sequential
nature of the dequeue operation may cause inadequate performance in the presence of
contention since only one dequeue can execute its sequential stage at a time. To increase
the potential parallelism available, this section introduces an alternative data structure for
a concurrent queue implemented by an array of lists. (A similar approach was used by
Rudolph [Rudolph 1982].) The increase in parallelism provided by this data structure is
orthogonal to those described in section 2 for a single linked list. The algorithms presented in
this section satisfy the linearizability property and provide more parallelism than Rudolph's
queue.

10

It is important to note that the improvements suggested in this section over the algo-
rithms in section 2 would probably only be effective on a machine possessing a combining
network. Without a combining network, algorithms that use fetch-and-add on shared vari-
ables to distribute operations through a concurrent data structure degrade due to contention
for the shared variables. In such situations, simple solutions that use shared variables infre-
quently and have short critical sections, probably will perform better than complex solutions
which admit greater potential concurrency.

const
-- NumLists must be defined as a power of 2

type
guardedList - record -- a linked-list with synchronization flags

L: list;
-- flags for serializing enqueues and dequeues, respectively, on L
eguard, dguard: integer;

end;

-- data structure for a highly parallel queue formed from an array of linked-lists
queue = record

glarray: array [0. (NumLists - 1)) of guardedList; -- an array of guarded lists
-- counters that cycle enqueues and dequeues through the list array

enqCounter,deqCounter: integer;
-- upper and lower bounds on the number of elements in the queue
UBcount,LBcount: integer;

end;

procedure initQ(var Q: queue); -- initialize the queue data structure
var i.prev-uard: integer;
begin

with Q do
-- initialize the operation and entry counts

*nqCounter := 0; deqCounter := 0; LBcount := 0; UBcount :a 0;
-- initialize each list as empty and initialize the guards
for i := 0 to (NuListo - 1) do

initLi t(glarray [i].L);
prevguard :- i - NumLists;
glarray(il.eguard :a prevguard;
glarray[il.dguard :a prevguard;

end;
end;

end;

The enqueue and dequeue operations presented in this section operate on a queue data
structure represented as an array of guarded lists. Each guarded list contains two guards
used to coordinate concurrent enqueues and dequeues, respectively, on that list. The guard

11

eguard (respectively, dguard) is used by FIFOenter and FIFOexit to provide mutual exclu-
sion between enqueue (dequeue) operations on the came list and to insure that enqueue
(dequeue) operations on a particular list enter their critical section in FIFO order of their
assignment to that list.

-- wait until the previous operation using this guard has completed
procedure FIFOenter(var g: integer; counter: integer);

var icount: integer;
begin

lcount := counter - NumLists;
repeat until atomic-read(g) - lcount;

end;

-- signal completion of a guarded operation
procedure FIFOexit(var g: integer; counter: integer);
begin

atomic-vrite(g,counter);

end;

Concurrent enqueues can be accomplished using fetch-and-add to update Q.enqCounter.
Each enqueue receives a unique value from Q.enqCounter which is used modulo NumLists
to direct the enqueue to the appropriate guarded list. Dequeues similarly use Q.deqCounter.
Enqueues (respectively, dequeues) directed at a particular list are applied sequentially, but
operations on different lists can proceed in parallel. Enqueues and dequeues operating on
the same list do not interfere unless the list is empty or a singleton.

Maintenance of Q.deqCounter, although similar to that of Q.enqCounter, is nevertheless
more difficult: special care must be taken when a dequeue operation is initiated on an
empty queue. Q.deqCounter must never overtake Q.enqCounter; otherwise, some number
of subsequent enqueues would appear lost, only to reappear later. This would violate
both the FIFO and linearizability properties of the queue. For this reason, each dequeue
operation cannot increment Q.deqCounter unless an element is available in the queue.

-- return TRUE if the specified variable was decremented successfully
-- from a positive value, else FALSE
procedure testDecrementRetest(var value: integer): boolean;

var result: boolean;~begin

result :a (atomic-read(value) > 0);
if result then

if fetch-and-add(value,-i) <a 0 then

fetch-and-add(value, 1);

result := FALSE;

end;
end;

return result;
end;

12

To prevent prema' ure increments of Q.deqCounter, the implementation maintains the
variable Q.LBcount, which is a lower bound on the number of elements in the queue.6 Each
enqueue operation, after incrementing Q.enqCounter, increments Q.LBcount to signal the
presence of another element in the queue. Before incrementing Q.deqCounter, each dequeue
operation checks the value of Q.LBcount to make sure there is a free element in the queue.
A dequeue secures the right to a free element in the queue by atomically decrementing
Q.LBcount from a positive value using testDecrementRetest.

To provide linearizability for the queue, we must prevent a dequeue invoked on a non-
empty queue from returning nil. Use of Q.LBcount alone is not sufficient to prevent this
from occurring. In his implementation of an unbounded queue, Rudolph uses a single
variable to keep track of the number of elements available [Rudolph 1982, p. 76] and
fails to provide linearizability. For an analysis of this point in the context of Rudolph's
implementation, see appendix B, especially figure B.2 and its discussion.

To prevent a dequeue invoked on a non-empty queue from returning nil, we introduce an
additional variable Q. UBcount, an upper bound on the number of elements in the queue. We
maintain the invariant that (Q. UBcount > 0) whenever an element is present in the queue.
Before incrementing Q.enqCounter, each enqueue operation increments Q. UBcount to signal
the pending addition of another element to the queue. After incrementing Q.deqCounter,
each dequeue operation decrements the value of Q. UBcount to indicate another element in
the queue has been sucessfully claimed.

To preserve linearizability, we insure that all elements in the queue have been claimed
successfully before a dequeue returns nil; this is true if (Q. UBcount = 0). If a dequeue
does not wait until all elements in the queue have been claimed before returning nil, the
following non-linearizable sequence can occur on a singleton queue containing eo&

1. process pl reserves an element in the queue by decrementing Q.LBcount to zero.

2. process p2 issues a dequeue that finds (Q.LBcouni = 0) and returns nil,

3. process p2 enqueues an element el in the queue, incrementing Q.LBcount,

4. process p2 issues a dequeue, decrements Q.LBcount and finds eO still in the queue as
it had not yet been claimed successfully by pi.

Although pi had already decremented Q.LBcount to zero (indicating that no more free
elements were available in the queue), it had not claimed eO, which p2 then claimed and
removed from the queue. Any attempt to linearize this set of operations would need op-
eration (4) after operation (2) due to real-time precedence constraints, but (4) needs to
serialize before (2) for this set of operations to be a legal sequential history.

The boolean function queueEmpty implements a protocol used by the dequeue operation
which avoids the non-linearizable behavior described above. The queueEmpty function tests
Q.LBcount with testDecrementRetest to see if an element in the queue is free; if not, it
tests Q. UBcount to make sure all elements in the queue have been claimed successfully

6More accurately, Q.LBcount is a lower bound on the number of elements whose position in the queue
has been secured, but have not yet been claimed by a dequeue.

13

before indicating that the queue is empty. Use of this protocol may cause a dequeue that
will eventually return nil to temporarily delay; however, the dequeue will only have to
wait until all other dequeues that received a positive value from Q.LBcount to claim their
elements from the queue and to decrement Q. UBcount, bringing its value to zero.

-- returns TRUE iff the queue is empty (Q. UBcount = 0), otherwise return
-- FALSE when Q.LBcount has been decremented successfully from a positive value
-- INVARIANT: the value of Q. UBcount is always non-negative
procedure queueEmpty(var Q: queue): boolean;

begin
repeat -- until queue is empty, or Q.LBcount has been decremented successfully

if testDecrementRetest(Q.LBcount) then return FALSE; end;
until (atomic-read(Q.UBcount) a 0);
return TRUE;

end;

-- enqueue an element on the highly parallel FIFO queue
procedure enqueue(var Q: queue; var e: element);
var last: pointer to element;

index,ecount: integer;
begin

-- signal the presence of another element in the queue
fetch-and-add(Q.UBcount, l);
-- get the list for the current enqueue, send the next enqueue to the next list
ecount a fetch-and-add(Q.enqCounter, 1);
-- increment Q.LBcount to permit another dequeue
fetch-and-add(Q. LBcount, 1);
-- compute the list index from the counter value
index := ecount MOD NumLists;
-- enqueue the element on the specified list
-- insuring that the previous enqueue on this list has completed its critical section
FIFOenter(Q.glarray[index].eguard,ecount);

-- replace the tail of the list with e, returning the previous tail
last :- fetch-and-store(Q.glarray[index].L.taile);

FIFOexit(Qoglarray[index].eguard,ecount);
if last a nil then -- list was previously empty: update the head pointer

atomic-write(Q.glarray[index].L.head,e);

else
atomic-write(last-.nexte) ; -- link e behind last

end;
end;

For the queue described in this section, the enqueue operation takes two arguments: Q,
a reference to a queue structure, and e, a reference to an element. The counter Q. UBcount
is incremented to indicate the pending addition of a new element to the queue. Next, the

14

'* - V

enqueue retrieves a unique value from Q.enqCounter with a fetch-and-add and increments
Q.LBcount to permit another dequeue operation to begin. The value (Q.enqCounter modulo
NumLists) specifies the list in the array into which the element will be inserted. FIFOenter
and FIFOexit use the eguard of the selected list to serialize concurrent enqueues upon it.
Using these two routines insures that elements are placed on the list in the order which the
enqueue operations were assigned to the list (based on the value the value each retrieved
from Q.enqCounter). This restriction is necessary to maintain the FIFO and linearizability
properties. The algorithm used to enqueue e on the list is identical to the one presented in
section 2.

-- dequeue an element from the highly parallel FIFO queue
procedure dequeue(var Q: queue): element
var firstEl, secondEl: pointer to element;

dcount, index: integer;
begin

if queueEmpty(Q) then return nil; else
-- get the list for the current dequeue, send the next dequeue to the next list
dcount := fetch-and-add(Q.deqCounter,l);
-- decrement Q. UBcount to show one less element available
fetch-and-add(Q.UBcount,-i);
index := dcount MOD NumLists;
-- insure previous dequeue on this list has completed its critical section
FIFOenter(Q.glarray[index].dguard,dcount);

repeat -- until a non-nil element has been found
firstEl := atomic-read(Q.glarray[index] .L.head);

until not (firstEl = nil);
-- get a pointer to the next element in the list
secondEl := atomic-read(firstEl".next);
-- splice the first element off the head of the list
Q.glarray[index].L.head := secondEl;
if secondEl = nil then

-- firstEl was the only element in the list, need to update the list tail
if compare-and-svap(Q.glarray[index].L.tail,firstEl,nil)

= FALSE then
-- firstEl is no longer tail: a concurrent enqueue is detected
-- loop until the concurrent enqueue completes
repeat until not (firstEl-.next a nil);
-- update head pointer
Q.glarray[index].L.head := firstEl .next;

end;
end;

FIFOexit(Q. glarray [index] dguard,dcount); -- ezit the critical section
end;
return firstEl; -- return the element dequeued

end;

15

Lend

The dequeue operation for the queue described in this section takes a single argument Q,
a reference to a queue structure. The dequeue routine checks the queue for emptiness using
the boolean function queueEmpty. If the queue is empty, dequeue returns nil. Otherwise,
the dequeue retrieves a unique value from Q.deqCounter with a fetch-and-add and decre-
ments Q. UBcount to indicate that it has claimed its element from the queue. The value
(Q.deqCounter modulo NumLists) specifies the list in the array from which the element
will be removed. FIFOenter and FIFOexit use the dguard for the selected list to serialize
concurrent dequeues upon it. Using these two routines insures that dequeues on a list pro-
ceed in the order which they were assigned to the list (based on the value the value each
retrieved from Q.deqCounter). Thus, retrieving a unique value from Q.deqCounter claims
a particular element in the queue for the dequeue operation. As with enqueues, dequeues
must be serialized on the list to maintain the FIFO and linearizability properties.

Once exclusive access to the target list has been insured with FIFOenter, the dequeue
operation polls the head of the list until an element is found. Polling is necessary since the
dequeue may need to wait for a concurrent enqueue to complete. The loop Wll terminate
since access is granted to this list only if it already contains an element, or a concurrent
c tueue was in the process of adding an element to the list. Inside the critical section, the
dequeue splices the first element from the head of the list and handles a dequeue from a
singleton list as in the algorithm presented in section 2. The code to handle a singleton list
can be moved outside the critical region; however, it provides only very limited parallelism
and complicates the analysis of the dequeue algorithm.

3.1 Restrictions

The restrictions presented in section 2.1 on arguments to the enqueue routine of section 2
apply here as well.

The algorithms presented in section 3 make no effort to bound the indices Q.enqCountcr
and Q.deqCounter, however, this implementation does not require infinite counters. By
restricting NumLists to a power of 2, modular arithmetic correctly selects the appropriate
list in the array despite wrapping of these counter values. In practice, restricting NumLists
to a power of 2 is not a problem and maintaining the counters with a simple protocol insures
good performance.

Several other limitations need to be imposed to insure the correctness of the algorithms
in section 3. First, P, the number of processes must be restricted such that:

P Irange of integerl
NumLists

This insures that no two processes will be active on the same list in the queue with the
same counter value. Second, the number of entries in the queue at any particular time must
be less than or equal to the Irange of positive integerl. This is necessary to insure that
neither Q.LBcount nor Q. UBcount wraps negative as a result of increments by the enqueue
routine. Finally, the number of concurrent dequeues pending must not exceed the number
of completed enqueues by Irange of negative integerl, otherwise Q.LBcount could wrap
from a negative to a positive value.

16

~ .w

Note that none of these restrictions effects the practicality of these algorithms for use
on real architectures.

3.2 Properties

To complete the description of the enqueue and dequeue routines in this section. as in
section 2, we show that the routines correctly implement a linearizable FIFO queue. Ve
argue sequential correctness and interference freedom for the queue operations and conclude
by showing that each operation history for the queue can be mapped to a linear order that
corresponds to a legal sequential history for a FIFO queue.

Sequential Correctness

* An enqueue correctly adds an element at the rear of the queue.

Each enqueue obtains a value from Q.enqCounter using fetch-and-add which specifies
the list into which the element will be enqueued. Use of this counter cycles enqueues
through the lists. Dequeues cycle in an identical fashion. Therefore, appending an
element at the end of the list specified by the counter adds an element to the end of
the queue. FIFOenter and FIFOexit use the eguard of the selected list used to permit
one enqueue operation per list at a time; this will not cause a single enqueue to wait.
Enqueueing an element on the selected list uses the same sequence of operations as
the enqueue operation presented in section 2 and the same arguments for sequential
corrrectness apply.

e A dequeue correctly removes an element from the front of the queue.

A dequeue secures rights to an element in the queue by decrementing Q.LBcount
from a positive value. Since each enqueue increments Q.LBcount after its fetch-and-
add on Q.enqCounter, this prevents a dequeue from executing a fetch-and-add on
Q.deqCounter that would cause it to overtake Q.enqCounter. This protocol insures
that a dequeue will never wait at a list for an an element whose enqueue has not yet
begun. In the absence of concurrent operations on the queue, the value of Q.LBcount
is identical to that of Q. UBcount and always non-negative. If a dequeue sees the value
of Q.LBcount as zero, Q. UBcount will also be zero; the number of successful dequeues
that occurred equals the number of enqueues that occurred; thus, the queue is empty
and the dequeue returns nil.

If a positive value of Q.LBcount is seen, the value obtained from Q.deqCounter with
a fetch-and-add specifies the list from which the dequeue gets its element. Since
enqueues and dequeues cycle through the lists in the same order and Q.enqCounter
never overtakes Q.deqCounter, the specified list contains the oldest element in the
queue at its head. FIFOenter and FIFOexit use the dguard of the selected list to
permit one dequeue operation per list at a time; this will not cause a single dequeue
to wait. The algorithm used to dequeue an element from the specified list is essentially
the same as that presented in section 2. The dequeue polls the head of the list to get
its element. In the absence of concurrent operations on the queue, this poll succeeds

17

the first time. Next, the dequeue splices its element out of the list. If secondEl is
non-nil, then L.head points to the next element in the list when the dequeue finishes.
Otherwise, L.head gets nil; the compare-and-swap with L.tail succeeds (since there
is no concurrent enqueue) and L.tail also gets nil. Both of these operation sequences
leave the list in a consistent state.

Interference Freedom

Above we showed that enqueues and dequeues perform properly if executed in mutual
exclusion. Here, we argue that concurrent enqueues and dequeues perform correctly even
in the presence of concurrent operations.

" Concurrent enqueues do not interfere with one another.

All operations by an enqueue on the counters in the shared queue structure are atomic.
Regardless of how the operations are interleaved, each enqueue results in a single in-
crement to Q.LBcount, Q. UBcount and Q.enqCounter. Concurrent enqueues each
obtain a different value from Q.enqCounter which indicates the appropriate list for
the current enqueue. FIFOenter and FIFOexit restrict the order in which enqueues
are applied to the selected list. Specifically, they insure that the ith enqueue on a
list secures a position for its element with its fetch-and-store on the list tail before
the i+1st enqueue on that list may proceed. By regulating mutual exclusion around
the fetch-and-store operation using the value from Q.enqCounter, we insure that all
elements are put into the queue in proper order. Interference between enqueue oper-
ations adding elements to the same list is ruled out by the same arguments presented
for the algorithms in section 2.

" Concurrent dequeues do not interfere with one another.

A dequeue secures rights to an element in the list by decrementing Q.LBcount from
a positive value. The atomicity of this operation insures the number of dequeues
permitted to proceed will not exceed the number of enqueues initiated on the queue.
The atomicity of fetch-and-add insures Q. UBcount is correct in spite of interleavings
and Q.deqCounter always indicates the appropriate list for the current dequeue. As
with enqueues, FIFOenter and FIFOexit restrict the order in which dequeues are
applied to the selected list. Mutual exclusion among dequeues around the operation
sequence that splices an element out of the list insures that no two dequeues interfere
in their operations on the list.

" Concurrent enqueues and dequeues do not interfere with one another.

Q.enqcounter is used exclusively by enqueues and Q.deqCounter is used used exclu-
sively by dequeues. Therefore, interactions through these counters are impossible.

Consider the interactions through Q.LBcount and Q. UBcount. All operations on the
counters Q. LBcount and Q. UBcount queue are atomic; therefore, individual operations
will not interfere. Since enqueues do do not use the values returned by fetch-and-
adds on these counters, enqueues are not affected by operations on these counters

18

by concurrent dequeues. Dequeues use the values of Q.LBcount and Q. UBcount to
test the queue for emptiness. If more enqueues have been initiated than successful
dequeues, then a dequeue may proceed; concurrency among enqueue and dequeue
operations does not invalidate this use.

If the concurrent enqueues and dequeues are directed to separate lists in the queue,
there is no further opportunity for interference. To complete the arguments for inter-
ference freedom, we need only show that concurrent enqueues and dequeues on the
same list, also do not interfere. Consider concurrent operations on a particular list L.

- Updates to L.head by enqueues and writes to L.head by dequeues do not interfere.
From the invariant shown in section 2, L.head 0 nil implies L.tail $ nil. A
dequeue, D, can write L.head only after it completes its repeat loop in which
it finds L.head 0 nil; thus, L.tail is also non-nil after the loop. Since only
a dequeue can set L.tail to nil and dequeues execute their operations on the
shared list structure in mutual exclusion, L.tail cannot become nil while D
executes unless D sets it to nil. The two statements in which D may write
L.head execute only when L.tail is non-nil. An enqueue can only update L.head
if it obtains a nil from L.tail. Therefore, the property holds.

- Concurrent dequeues do not interfere with enqueues through interactions with
L.tail and elements' next fields. Since enqueues and dequeues interact with one
another through these fields list as in the algorithms presented in section 2, the
non-interference arguments in section 2 apply.

Linearizability

To demonstrate linearizability, we present a mapping that transforms an operation history
for the concurrent queue into a linear order that is consistent with the real-time ordering
of the operations and argue that this operation ordering provides FIFO semantics for the
queue.

a Map each enqueue operation to the completion of its fetch-and-add on the counter
Q.enqCounter. If enqueues map to the same point as a result of some combination of
simultaneous fetch-and-adds to Q.enqCounter, the mapping can be perturbed slightly
to serialize the mapping of the operations in a manner consistent with the apparent
serialization provided by the combining network.

1 Map each dequeue returning nil to the completion of its final atomic-read of Q. UBcount
(which finds Q. UBcount = 0). At this point the queue is guaranteed to be empty.
If two such dequeues map to the same point due to combination of simultaneous
atomic-reads of Q. UBcount, they can be serialized in an arbitrary order. For dequeues
returning a non-nil value, map the dequeue to the completion of its fetch-and-add
on Q.deqCounter. For each pair of successful dequeues that maps to the same point
in time, perturb the mapping slightly to serialize the mapping of the operations in a
manner consistent with the apparent serialization provided by the combining network.
An unsuccessful dequeue will never map to the same point as a successful dequeue:

19

Q. UBcount is always greater than zero while a dequeue is executing its fetch-and-add
on Q.deqCounte, therefore, unsuccessful dequeue cannot find Q. UBcount = 0 at the
same time.

If an enqueue and a dequeue map to the same point in time, perturb the mapping so
that the dequeue occurs after the enqueue. Modifying the mapping in this manner will
never violate the FIFO property.

Each enqueue of an element maps before its corresponding dequeue. Since an en-
queue increments Q.LBcount following its fetch-and-add on Q.enqCounter, and a dequeue
must decrement Q.LBcount from a positive value before it can execute its fetch-and-add
on Q.deqCounter, then each dequeue's fetch-and-add must occur after the corresponding
enqueue's. Mapping enqueues to their fetch-and-adds insures that they are mapped in the
order that the elements assume in the queue. Mapping successful dequeues to their last
fetch-and-add serializes dequeues in the order in which they claim elements from the queue.

Checking that Q. UBcount = 0 before returning nil from a dequeue D insures that
all elements in the queue have been already claimed by some dequeue. Specifically, this
protocol insures that dequeues for all elements enqueued before D occurs serialize before D.

Finally, incrementing Q. UBcount prior to an enqueue and decrementing it following a
dequeue insures that Q. UBcount will always be greater than zero if the queue is non-empty.
Since a dequeue will never return nil unless Q. UBcount = 0, a dequeue will never return
nil when invoked on a non-empty queue. This policy prevents a dequeue from missing an
element enqueued by a concurrent enqueue.

Using these mappings for operations, any operation history permitted by the implemen-
tation can be turned into a linear ordering. Since each queue operation maps to a statement
inside its active interval, the mapping satisfies the partial order induced by the real-time
ordering of the intervals. Furthermore, the above arguments show that the mapping is
consistent with a legal sequential history for the queue. Therefore all operation histories of
the concurrent queue presented in this section satisfy the linearizability criterion.

4 Conclusions

Developing algorithms for operations on a concurrent queue that permit only linearizable
operation histories proved surprisingly difficult. The primary difficulty centered on insuring
that all operations have a consistent view of when each class of operation takes effect.

Insuring that all operations have a consistent view of when each class of operation takes
effect is crucial to constructing algorithms for linearizable operations. For example, consider
Rudolph's algorithms in appendix B. Inserts are serialized on their fetch-and-add to Tail;
thus, to inserts, each insert appears to take effect at the completion of its fetch-and-add to
Tail. Elements inserted, however, are not available to a remove operation until the insert
executes its fetch-and-add to #Ql. Therefore, from the point of view of remove operations,
inserts appear to take effect at the fetch-and-add to #Ql. This difference between the two
classes of operations in their viewpoint as to when inserts take effect admits anomalous
behavior that prevents linearizability. In figure B.1, an operation history is shown that

20

I ... | " "]

forces the effect of an insert operation to map to a point long after the insert completes;
this mapping, which violates the real-time precedence constraint of linearizability, results
from the difference in viewpoint.

In the algorithms presented in section 3, the protocol using Q.LBcount and Q. UBcount
insures that both enque,, and dequeue operations maintain consistent views as to when
enqueues take effect. In particular, an enqueue operation is seen by other enqueues to map
to its fetch-and-add on Q.enqCounter. Dequeues view an enqueue operation as occurring in
the interval between the enqueue's fetch-and-adds on Q. UBcount and Q.LBcount: a dequeue
cannot return nil while Q. UBcount is non-zero, and also cannot try to grab an element
from the queue until Q.LBcount is greater than zero. Since dequeues view an enqueue as
occurring in the interval between these two operations, it is consistent with their view to
map the enqueue to its fetch-and-add on Q.enqCounter. The consistency of these viewpoints
prevents concurrent operations from exhibiting anomalous behavior.

Finally, the algorithms in this paper have implications for designing hardware for par-
allel machines. Machines have traditionally provided test-and-set primitives for process
synchronization; few parallel machines provide more complex hardware primitives for pro-
cess synchronization and interprocess communication. In section 2 of this paper, a queue
implementation is presented that would provide better performance than any test-and-sd
style implementation. The primitives required for this implementation, while more costly
to implement than test-and-set, are nevertheless reasonably simple and general purpose.
Therefore, they are strong candidates for hardware implementation.

Acknowledgements

Lawrence Crowl and Peter Dibble helped uncover errors in early versions of the queue %

algorithms. Also, their detailed comments on draft versions, along with those of Tom
LeBlanc, significantly improved the presentation of this paper.

21

Appendix A: Fetch-and-q) Primitives

This appendix contains functional specifications for the fetch-and-t primitives used by
the queue algorithms in this paper. Each of these operations is atomic, namely, it executes
indivisibly with respect to other operations on the target memory location. Note that the
semantics for the fetch-and-store primitive have often been referred to as swap; however, we
use the fetch-and-store name to emphasize the asymmetry of this operation (as opposed to
a symmetric memory-to-memory swap).

All of the operations described, with the exception of compare-and-swap, could take
effective advantage of a combining switch to provide parallelism among a set of operations
simultaneously directed at the same memory location. Two compare-and-swap operations
are only combinable if vall of the first equals va12 of the second. Note however that the
algorithms presented in the body of this paper never execute in more than one compar-
and-swap operation on a memory location at a time. A single compare-and-swap can be
effectively combined with the other operations.

-- atomically read the value of x and return it
atomic-read(var x: word): word;
begin atomic

return x;
end atomic;

-- atomically replace the value of x with val
atomic-write(var x: word; val: word);
begin atomic

x := val;
end atomic;

-- atomically add the value val to x returning x's old value
fetch-and-add(var x: integer; val: integer): integer;
var temp: integer;

begin atomic
temp := x;
x :- x + val;
return temp;

end atomic;

-- atomically replace the value of x with val returning xs old value
fetch-and-store(var x: word; val: word): word;
var temp: word;
begin atomic

temp :f x;
x := val;
return temp;

end atomic;

22

1

-- atomically replace the value of x with va12 if the value
-- of x is equal to vail and return a booleara success code
compare-and-swap(var x: word; vall,val2: word): boolean;
var result: boolean;
begin atomic

result :- (x = vail);
if result then x :val2; end;
return result;

end atomic;

23

Appendix B: Analysis of Rudolph's Concurrent Queue

Rudolph's dissertation presents an implementation for managing an unbounded concur-
rent queue represented as an array of QSIZE lists [Rudolph 1982, p. 76]. The variables
lead and Tail are counters used to direct operations on the queue to a particular list. The
variable #Ql is a lower bound on the number of elements in the queue. His algorithms for
managing an unbounded queue are of the following form:

procedure insert(p: pointer to element;var Q: queue);

var myloc: integer;
begin

myloc : fetch-and-add(Tail,1) mod QSIZE;

insert p into list myloc of Q

fetch-and-add(#Q,1) ;
end;

procedure remove(var p: pointer to element; var Q: queue);
var myloc: integer;
begin

if testDecrementfetest(#Ql,) then
myloc := fetch-and-add(HeadI) mod QSIZE;

remove an element from list myloc of Q assigning it to p

else

indicate that queue was empty

end;
end;

Insert operations serialize addition of elements to the queue by the order of their fetch-
and-add on Tail. Remove operations serialize removal of elements from the queue by the
order of their fetch-and-add on Head. These algorithms permit non-linearizable operation
histories for the queue data structure. Two classes of non-linearizable operation histories
are shown below.

Consider executing the operation history shown in figure B.1 on an empty queue. Insert)
is serialized before insert2 since its fetch-and-add on Tail occurs first. The element added to
the queue by insertl becomes available for removal after the fetch-and-add on #Qi in insert2.
Remove) retrieves the element placed in the queue by insert). However, the queue appears

24

U ~~~I 11(UNI -, .. W

fetch-and-add(Tai), 1) fetch.
"

nd.
&
dd(#Ql

' l)

Iinterl
fetch.and.add(Tail, 1)ffetch-and-add(*Q l,I)

I i ... t2

Z TDR(*Q,1)

I removel
TDR(*QI,1)

Figure B.1

empty to remove2 since #Ql is again zero following a decrement in the testDecrementRetest
(TDR) operation of remove1. The element added to the queue by insert2 becomes available
for removal after the fetch-and-add on #Q1 by insertl. Since insert2 strictly precedes
remove2 and the element enqueued by insert2 has not been dequeued by any intervening
remove, the element should be visible to remove2. This is not the case. Any mapping
that transforms the operation history to a legal sequential history must map insert2 after
remove2, violating a real-time precedence constraint of the operation history. Therefore,
this operation history is not linearizable.

t-d-d 1,->) > 0)'

I removel I
(#Q1 > 0)?

(fetch-and-4dd(#Ql,-1) > 0)? fetch.and'add(' Q1')

remove2 4

fetch-and.&dd(PQI,1)

[j(#QI > 0)'

remove3

Figure B.2

Non-linearizable histories can arise using Rudolph's queue implementation in a second
way as well. Consider executing the operation history in figure B.2 on a queue containing one
element. In this figure, the constituent parts of the testDecrementRetest operation are shown
where appropriate. Removel and remove2 find #Q1 equal to 1 when they execute their test.
Removel atomically decrements #Q1 from 1 to 0 and the second test is successful. Remove2
atomically decrements #Ql from 0 to -1 and fails the second test, so it must increment
#Q1 to restore its state. Before remove2 increments #Ql, insertl occurs, which atomically
increments #QI from -I to 0. Next, removeS finds #Ql = 0 and returns, failing to find an
element in the queue. Finally, remove2 atomically increments #Ql from 0 to 1, making the
element added by insertl visible. Having the queue appear empty to remove3 violates the
real-time precedence constraint necessary for linearizability since insertI strictly precedes

25

remove3 and the element enqueued by insertl has not been dequeued by any intervening
remove. Therefore, this operation sequence is also not linearizable.

26

References

[BBN 1985] Butterfly Parallel Processor Overview, version 1, BBN Laboratories, Cam-
bridge, Massachusetts, June 1985.

[Dimitrovsky 19861 Isaac Dimitrovsky, "A Group Lock Algorithm with Applications", Ul-
tracomputer Note 112, Courant Institute, New York University, November 1986.

[Edler et al. 1985a] Jan Edler, Allan Gottlieb and Jim Lipkis, "Operating Systems Consid-
erations for Large-Scale MIMD Machines", Ultracomputer Note 92, Courant Institute.

New York University, December 1985.

[Edler et al. 1985b] Jan Edler, Allan Gottlieb, Clyde P. Kruskal, Kevin P. McAuliffe. Larry
Rudolph, Marc Snir, Patricia J. Teller and James Wilson, "Issues Related to MIMI)
Shared-Memory Computers: The NYU Ultracomputer Approach", Procedings of thc

12th Annual International Symposium on Computer Architecture, pages 126-135, June

1985.

(Gottlieb and Kruskal 1981] Allan Gottlieb and Clyde P. Kruskal, "Coordinating Parallel

Processors: A Partial Unification", Computer Architecture News, 9(6):16-24, October
1981.

[Herlihy 1987] Maurice Herlihy, Impossibility and universality results for wait-free synchro-
nization, 1987, unpublished manuscript.

[Herlihy and Wing 1987] Maurice Herlihy and Jeanette Wing, "Axioms for Concurrent
Objects", Proceedings of the 14th ACM Symposium on Principles of Programming

Languages, pages 13-26, January 1987.

[Kruskal et al. 1986] Clyde P. Kruskal, Larry Rudolph and Mark Snir, "Efficient Synchro-

nization on Multiprocessors with Shared Memory", Ultracomputer Note 105, Courant
Institute, New York University, May 1986.

[Lamport 1983] Leslie Lamport, "Specifying Concurrent Program Modules", ACM Trans-
actions on Programming Languages and Systems, 5(2):190-222, April 1983.

(Rudolph 19821 Lawrence Rudolph, Software Structures for Ultraparallel Computing, PhD
thesis, New York University, February 1982.

27

3 -. . ,1

Al

,LAoh

L AI
U S -1,y--..-.w '

